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DERIVATIVE

M. CHUAQUI AND CH. POMMERENKE

Abstract. Let f be locally univalent in the unit disc D. We
study the integral means of powers |f ′|p and obtain upper bounds
for them in terms of a solution of an algebraic equation of degree 4.
The coefficients of this algebraic equation depend on the parameter
p and on the hyperbolic norms of the pre-Schwarzian f ′′/f ′ and
Schwarzian derivative Sf . We present some results derived from
numerical analysis of the polynomial equation.

1. INTRODUCTION

Let f be bounded and univalent in the unit disc D. For 0 ≤ r < 1
and −∞ < p <∞ we consider the integral means

Ip(f, r) =

∫ 2π

0

|f ′(reit)|pdt

and define

βf (p) = lim sup
r→1

log Ip(f, r)

| log(1− r)|
.

Thus βf (p) is the smallest number α such that for each ε > 0

Ip(f, r) = O((1− r)−α−ε) , r → 1 .

The universal means spectrum is defined by

B(p) = sup{ βf (p) : f bounded univalent } .

It is not difficult to see that βf (p) is convex and

βf (p± q) ≤ βf (p) + q , q ≥ 0 .

Both properties are inherited by B(p) and become useful tools in es-
timating B(p) once it is known at specific values. The function B(p)
has been determined for certain ranges of p and its full determination
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would solve several interesting problems in geometric function theory.
For example, it has been established that

B(p) = p− 1 , p ≥ 2 ,

and that
B(p) = |p| − 1 , p ≤ q0

for some q0 ≤ −2, [5], [15]. Brennan had earlier conjectured that
B(p) = |p| − 1 for p ≤ −2, [3]. As it turns out, this would follow from
just showing that B(−2) = 1.

Among positive values of p the case p = 1 has particular interest
because it is connected with the coefficient problem. Let

f(z) =
∞∑
n=0

anz
n .

Then

n|an| ≤
1

2πrn−1

∫ 2π

0

|f ′(reit)|dt , (1.1)

and choosing r = 1− 1/n it follows that for each ε > 0

n|an| = O(nβf (1)+ε) = O(nB(1)+ε) , n→∞ .

A remarkable result of Carleson and Jones [4] shows that one did not
lose much in taking the absolute value inside the integral in (1.1). They
proved that if γ is defined by

γ = sup{ lim sup
n→∞

log(n|an|)
log n

: f bounded univalent}

then
γ = B(1) .

By convexity B(1) ≤ 0.5, and much work has been devoted to finding
its exact value. For example, it has been shown by analytic means that

0.17 < B(1) < 0.4886 ,

see [9], [12], [13, Sect. 5.2], [14, Sect. 8.4]. Numerical experimentation
carried out by Carleson and Jones suggested that B(1) > 0.23. This
led them to conjecture that B(1) = 1/4 [4].

On the other hand, using a different experimental approach, P. Kraet-
zer was led in [10], [11] to results that motivated the conjecture that

B(p) =
p2

4
, |p| ≤ 2 . (1.2)

If true, it would solve the Brennan conjecture by setting p = −2, and
the Carleson-Jones conjecture for p = 1.
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In this paper we shall show how to estimate βf (p) in terms of the
(hyperbolic) norm of the quantities f ′′/f ′ and the Schwarzian derivative
Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2. This, on the one hand, will allow us
to estimate integral means for functions in the Nehari class, and on
the other, the estimate will be applicable to functions not necessarily
univalent. The bound that we obtain for βf (p) is a solution of an
algebraic equation of degree 4, and thus can be estimated numerically.
We present these results in the last section.

2. RESULTS

Our main result, stated below, only requires the function f to be
locally univalent in D.

Theorem 1 : Suppose that

(1− |z|)|f
′′(z)

f ′(z)
| ≤ a , r0 ≤ |z| < 1 , (2.1)

and
(1− |z|)2|Sf(z)| ≤ b , r0 ≤ |z| < 1 . (2.2) .

Then
βf (p) ≤ β

where β is the smallest positive solution of

β(β+1)(β+2)(β+3)− (4|p+1|b+(p+1)2a2)β(β+1) = 4p2b2 . (2.3)

Proof : Let

g(z) = (f ′(z))p/2 =
∞∑
n=0

bnz
n (2.4)

and consider

I(r) =
1

2π

∫ 2π

0

|f ′(reit)|pdt =
1

2π

∫ 2π

0

|g(reit)|2dt .

Then

I(r) =
∞∑
n=0

|bn|2r2n ,

I′′(r) =
∞∑
n=1

2n(2n− 1)|bn|2r2n−2 ,

I′′′′(r) =
∞∑
n=2

2n(2n− 1)(2n− 2)(2n− 3)|bn|2r2n−4
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≤
∞∑
n=2

[2n(2n− 2)]2|bn|2r2n−4 = 16
∞∑
n=2

[n(n− 1)]2|bn|2r2n−4 .

It follows that

I′′′′(r) ≤ 16

2π

∫ 2π

0

|g′′(reit)|2dt . (2.5)

From (2.4) we have

g′ =
p

2
(f ′)

p
2
f ′′

f ′

and

g′′ =
p

2
(f ′)

p
2

(
f ′′′

f ′
+
p− 2

2
(
f ′′

f ′
)2

)
=
p

2
(f ′)

p
2

(
Sf +

p+ 1

2
(
f ′′

f ′
)2

)
.

This inserted in (2.5) gives

I′′′′(r) ≤ 4p2

2π

∫ 2π

0

|f ′|p
(
|Sf |2 + |p+ 1||f

′′

f ′
|2|Sf |+ (p+ 1)2

4
|f
′′

f ′
|4
)
dt ,

where the integrand is evaluated at reit. Thus for r ≥ r0 we obtain

I′′′′(r) ≤ 4p2

2π

∫ 2π

0

|f ′|p
(

b2

(1− r)4
+

4|p+ 1|b+ (p+ 1)2a2

4(1− r)2
|f
′′

f ′
|2
)
dt .

Also

I′′(r) +
I′(r)

r
=
∞∑
n=1

4n2|bn|2r2n−2

=
4

2π

∫ 2π

0

|g′(reit)|2dt =
p2

2π

∫ 2π

0

|f ′|p|f
′′

f ′
|2dt .

Hence for each δ > 0 and r sufficiently close to 1

I′′′′(r) ≤ 4p2b2

(1− r)4
I(r) +

4|p+ 1|b+ (p+ 1)2a2 + δ

(1− r)2
I′′(r) (2.6)

because I′(r) = o(I′′(r)) as r → 1.

The differential equation

u′′′′(r) =
4p2b2

(1− r)4
u(r) +

4|p+ 1|b+ (p+ 1)2a2 + δ

(1− r)2
u′′(r)

admits the solution

u(r) =
B

(1− r)β
where

β(β + 1)(β + 2)(β + 3)− (4|p+ 1|b+ (p+ 1)2a2 + δ)β(β + 1) = 4p2b2 .
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Therefore if B > 0 is chosen sufficiently large and r is close to 1 then

I(r) ≤ u(r) .

By letting δ → 0 we obtain the conclusion of the theorem.

The Nehari class is the set N of all (univalent) functions defined in
D such that

(1− |z|2)2|Sf(z)| ≤ 2 .

In [6] it was shown that any such function can be normalized so that
f ′′(0) = 0 while still remaning analytic. This gives rise to the class N0.
The normalization is accomplished by considering a suitable Möbius
shift from the left, which as mentioned above does not introduce a
pole. Also, when normalized, the image f(D) will either be bounded
or else a parallel strip.

Theorem 2: Suppose that f ′′(0) = 0 and

(1− |z|2)2|Sf(z)| ≤ 2s ≤ 2 . (2.7)

Then for p ≥ −1
βf (p) ≤ β

where β is the unique positive solution of

β(β+1)[(β+2)(β+3)−(p+1)(2s+(p+1)(1−
√

1− s)2)] = p2s2 . (2.8)

Proof: It order to apply Theorem 1 we need to establish the bound
for y = f ′′/f ′. Since

y′ =
1

2
y2 + Sf

it is not difficult to see that |y(z)| ≤ v(|z|) where v = v(x) is the
solution to the first order equation

v′ =
1

2
v2 +

2s

(1− x2)2
, v(0) = 0 .

For details, see [7]. This leads to the estimate

lim sup
|z|→1

(1− |z|2)|f
′′(z)

f ′(z)
| ≤ lim sup

x→1
(1− x2)v(x) = 2(1−

√
1− s) .

It follows that for any number a > 1−
√

1− s there exists 0 ≤ r0 < 1
such that

(1− |z|)|f
′′(z)

f ′(z)
| ≤ a , r0 ≤ |z| < 1 .

Thus we can use Theorem 1 for any a > 1−
√

1− s, b > s/2 and suitable
r0. In the limiting case we obtain the conclusion of the theorem.
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Since Theorem 1 only requires estimates near the boundary it is
natural to impose restrictions only on the upper limits of the pre-
Schwarzian and Schwarzian norms. In this case we can also drop the
normalization f ′′(0) = 0.

Theorem 3: Suppose that f is bounded and

lim sup
|z|→1

(1− |z|2)2|Sf(z)| ≤ 2s < 2 .

Then for p ≥ −1
βf (p) ≤ β

where β is the unique positive solution of

β(β + 1)[(β + 2)(β + 3)− (p+ 1)(2s+ (p+ 1)(1−
√

1− s)2)] = p2s2 .

Remark: Note that functions satisfying the hypothesis of the theorem
are not necessarily univalent.

Proof: We need to estimate (1 − |z|)|f ′′/f ′| near the boundary. Let
y = f ′′/f ′ and let s′ be such that 2s < 2s′ < 2. Choose r0 so that

(1− |z|2)2|Sf(z)| ≤ 2s′

for r0 ≤ |z| < 1. Since

y′ =
1

2
y2 + Sf

we shall use a comparison argument as before to bound |y(z)| in terms
of the solution v = v(x) of

v′ =
1

2
v2 +

2s′

(1− x2)2
, v(0) = 0 .

Let ζ be fixed with |ζ| = 1. If |y(r0ζ)| ≤ v(r0) then

|y(xζ)| ≤ v(x) , r0 ≤ x < 1 .

Thus

lim sup
x→1

(1− x2)|y(xζ)| ≤ lim sup
x→1

(1− x2)v(x) = 2(1−
√

1− s′) . (2.9)

If |y(r0ζ)| > v(r0) we need to consider a Möbius transformation g =
T ◦f so that w = g′′/g′ has an appropriate initial condition at z = r0ζ.
Let

g =
f

1− cf
.

Then
g′′

g′
=
f ′′

f ′
+

2cf ′

1− cf
. (2.10)



INTEGRAL MEANS AND SCHWARZIAN 7

First choose c so that∣∣∣∣f ′′(r0ζ)

f ′(r0ζ)
+

2cf ′(r0ζ)

1− cf(r0ζ)

∣∣∣∣ < v(r0) . (2.11)

This represents an open disc in the variable c. With this, the function
w = g′′/g′ satisfies

w′ =
1

2
w2 + Sf

and |w(r0ζ)| < v(r0ζ). It follows that

|w(xζ)| ≤ v(x) , r0 ≤ x < 1 . (2.12)

In particular, g cannot have a pole in [r0ζ, ζ), which means that f did
not assume the value 1/c in that segment. It is clear that the restriction
(2.11) allows one to choose c so that the stronger condition holds:

1

c
/∈ f [r0ζ, ζ) .

From (2.11) and (2.12) we obtain for r0 ≤ x < 1

|f
′′(xζ)

f ′(xζ)
| ≤ v(x) +

2|c||f ′(xζ)|
|1− cf(xζ)|

,

hence

(1− x2)|f
′′(xζ)

f ′(xζ)
| ≤ (1− x2)v(x) +

2|c|(1− x2)|f ′(xζ)|
|1− cf(xζ)|

.

Since (1 − x2)|f ′(xζ)| ≤ 4dist(f(xζ), ∂Ω), Ω = f(D), and since the
term |1 − cf(xζ)| remains bounded away from 0, we conclude that,
given s′′ with s′ < s′′ < 1, there exists r1 = r1(ζ) such that

(1− x2)|f
′′(xζ)

f ′(xζ)
| ≤ 2(1−

√
1− s′′) , r1 ≤ x < 1 .

Finally, observe that the parameters in (2.11) depend continuously
on ζ, therefore we can make the selection of c = c(ζ) in a continuous
fashion. This implies that r1 also varies continuously, hence we can
make the choice of r1 independent of ζ. This together with the initial
estimate (2.9) implies that for any s < s′′ < 1

lim sup
|z|→1

|f
′′(z)

f ′(z)
| ≤ 2(1−

√
1− s′′) .

Hence we can apply Theorem 1 for any a > 1 −
√

1− s and b > s/2,
from which the conclusion of Theorem 3 follows.
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3. CONSEQUENCES OF THEOREM 2

In this section we would like to present some consequences and nu-
merical results that can be obtained from Theorem 2.

(i) First let us consider equation (2.8) for small values of s. Then we
have

β(β + 1)[(β + 2)(β + 3) + O(s)] = p2s2 , s→ 0 .

Since β = 0 when s = 0, it follows by continuity that for small values
of s the dominant term in the left hand side is 6β. From this it is not
difficult to see that 6β = p2s2 + O(s3). Hence for p ≥ −1

βf (p) ≤
1

6
p2s2 + O(s3) , s→ 0 . (3.1)

It was shown in [8] that there exists a constant c > 0 and s0 > 0 small
enough such that for each 0 ≤ s ≤ s0 there is a function f satisfying
(2.7) for which

βf (1) ≥ ck2 .

Hence (3.1) for p = 1 is best possible in order of magnitude.

(ii) Let now s = 1 in (2.8). This means, we are considering the full
class N0. We have

β(β + 1)[(β + 2)(β + 3)− (p+ 1)(p+ 3)] = p2 ,

that is

β4 + 6β3 + (8− 4p− p2)β2 + (3− 4p− p2)β = p2 . (3.2)

This implies that

β ∼ p2

3
, p→ 0 ,

hence

βf (p) ≤
p2

3
+ O(p3) , p→ 0 .

From (3.2) we can also obtain the following estimates for βf (p), f ∈ N0:

p = −1 − 0.8 − 0.6 − 0.4 − 0.2 − 0.1

βf (p) < 0.1323 0.0965 0.0632 0.0336 0.0104 0.0030

p = 0.1 0.2 0.4 0.6 0.8 1

βf (p) < 0.0030 0.0175 0.0874 0.2171 0.3853 0.5726 .

Note that, for p ≤ −0.2, these bounds for N0 are better than the
conjectured bound (1.2) for general univalent functions. Also, since
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βf (p) is convex, we can use the estimates for small values of p and the
fact that βf (2) ≤ 1 to obtain the improved estimate

βf (1) ≤ 0.42 .

Unfortunately this is still far from the bound βf (1) ≤ 0.25 conjectured
by Carleson and Jones. In any case, this should be compared with the
bound B(1) < 0.4886.

(iii) Suppose that f is univalent in D and has a k-quasiconformal
extension to C, where 0 ≤ k ≤ 1/3. Then (2.7) holds with s = 3k,
hence by (3.1)

βf (p) ≤
3

2
p2k2 + O(k3) , k → 0 . (3.3)

If p is determined such that βf (p) = p− 1 then [14, Cor. 10.18] shows
that the Hausdorff dimension satisfies dim∂f(D) ≤ p. Using (3.3) we
obtain first that p = 1 + βf (p) < 1 + O(k2), which inserted back into
(3.3) gives

dim∂f(D) ≤ 1 +
3

2
k2 + +O(k3) , k → 0 . (3.4)

This improves the estimate 1 + 37k2 established in [1].
Binder and Rhode [2] have conjectured that (3.3) can be replaced by

βf (p) ≤ p2k2/4; compare (1.2). Note that our estimate (3.1) is better
provided we replace the assumption of k-quasiconformal extensibility
by the stronger assumption (2.7) with s = k.
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